The effects of Memantine and MK801 on NMDA receptor switching 2B and 2A subunits in hippocampal cell culture.

Authors

  • Ezequiel Uribe Centro de Biofísica y Neurociencia de la Universidad de Carabobo, Carabobo, Venezuela
  • Eduardo Sanchez-Mendoza Centro de Biofísica y Neurociencia de la Universidad de Carabobo, Carabobo, Venezuela

DOI:

https://doi.org/10.31157/an.v28i2.410

Keywords:

Schizophrenia, synapses, SNARE, glutamate, development, NMDA receptor.

Abstract

Background: Schizophrenia (SCZ) is a severe and chronic neurodevelopmental disorder which onset begins in adolescence or early adulthood. Notwithstanding, the brain dysfunction occurs before the disease and involves the NMDA receptor switch from GluN2B to GluN2A at early neonatal period. We have recently postulated memantine (MEM) as an effective experimental treatment, which may have its root on the modulation of NMDA receptor subunit turnover during the postnatal period by preventing glutamatergic hypofunction in the maternal deprivation model of SCZ. Methods: To explore this possibility, here we have evaluated the turn-over of pre and postsynaptic glutamatergic synaptic components by using primary mouse hippocampal neurons during the synaptic formation period. Results: MK801 stimulation prevented the GluN2B to GluN2A molecular switch at 11 days in vitro (DIV).  Importantly, vesicular glutamate transporter 2 (VGLUT2) was also reduced at this time point. MEM treatment reverted these effects by normalizing GluN2B, GluN2A and overexpressing VGLUT2 expression. Conclusion: Our data supports a mechanism by which behavioral abnormalities previously observed in animals after maternal deprivation may be prevented by MEM treatment by regulation of the glutamatergic synaptic molecular composition.

References

Rapoport, J. L., Addington, A. M., Frangou, S., & Psych, M. R. The neurodevelopmental model of schizophrenia: update 2005. Molecular psychiatry. 2005;10(5), 434–449. https://doi.org/10.1038/sj.mp.4001642 DOI: https://doi.org/10.1038/sj.mp.4001642

Lehman, A. F., Lieberman, J. A., Dixon, L. B., McGlashan, T. H., Miller, A. L., Perkins, D. O., Kreyenbuhl, J., American Psychiatric Association, & Steering Committee on Practice Guidelines. Practice guideline for the treatment of patients with schizophrenia, second edition. The American journal of psychiatry. 2005;161(2 Suppl), 1–56.

Steullet, P., Cabungcal, J. H., Monin, A., Dwir, D., O'Donnell, P., Cuenod, M., & Do, K. Q. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology?. Schizophrenia research. 2016; 176(1), 41–51. https://doi.org/10.1016/j.schres.2014.06.021 DOI: https://doi.org/10.1016/j.schres.2014.06.021

Liu, X. B., Murray, K. D., & Jones, E. G. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004;24(40), 8885–8895. https://doi.org/10.1523/JNEUROSCI.2476-04.2004 DOI: https://doi.org/10.1523/JNEUROSCI.2476-04.2004

Liu, H., Li, Y., Wang, Y., Wang, X., An, X., Wang, S., Chen, L., Liu, G., & Yang, Y. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. 2015;Molecular brain, 8, 49. https://doi.org/10.1186/s13041-015-0141-y DOI: https://doi.org/10.1186/s13041-015-0141-y

Monaco, S. A., Gulchina, Y., & Gao, W. J. NR2B subunit in the prefrontal cortex: A double-edged sword for working memory function and psychiatric disorders. Neuroscience and biobehavioral reviews. 2015;56, 127–138. https://doi.org/10.1016/j.neubiorev.2015.06.022 DOI: https://doi.org/10.1016/j.neubiorev.2015.06.022

Philpot, B. D., Cho, K. K., & Bear, M. F. Obligatory role of NR2A for metaplasticity in visual cortex. Neuron. 2007;53(4), 495–502. https://doi.org/10.1016/j.neuron.2007.01.027 DOI: https://doi.org/10.1016/j.neuron.2007.01.027

Gonzalez-Burgos, G., & Lewis, D. A. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia bulletin. 2012, 38(5), 950–957. https://doi.org/10.1093/schbul/sbs010 DOI: https://doi.org/10.1093/schbul/sbs010

Marballi, K. K., & Gallitano, A. L. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Frontiers in behavioral neuroscience. 2018;12, 23. https://doi.org/10.3389/fnbeh.2018.00023 DOI: https://doi.org/10.3389/fnbeh.2018.00023

Uribe, E., Fernández, L. Effects of Neonatal Administration of Memantine on Hippocampal Asymmetry and Working Memory Impairment Induced by Early Maternal Deprivation in Rats. Neurophysiology. 2019;51, 97–106. https://doi.org/10.1007/s11062-019-09799-4 DOI: https://doi.org/10.1007/s11062-019-09799-4

Behrendt R. P. Dysregulation of thalamic sensory "transmission" in schizophrenia: neurochemical vulnerability to hallucinations. Journal of psychopharmacology (Oxford, England). 2006;20(3), 356–372. https://doi.org/10.1177/0269881105057696 DOI: https://doi.org/10.1177/0269881105057696

Hoffmann, H., Gremme, T., Hatt, H., & Gottmann, K. Synaptic activity-dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons. Journal of Neurochemistry. 2000;75(4), 1590–1599. https://doi.org/10.1046/j.1471-4159.2000.0751590.x DOI: https://doi.org/10.1046/j.1471-4159.2000.0751590.x

Song, X., Jensen, M. Ø., Jogini, V., Stein, R. A., Lee, C. H., Mchaourab, H. S., et al. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 2018;556(7702), 515–519. https://doi.org/10.1038/s41586-018-0039-9 DOI: https://doi.org/10.1038/s41586-018-0039-9

Uribe, E., Sánchez-Mendoza, E., Nieves, N., & Merchor, G. Neonatal Administration of Memantine Enhances Social Cognition in Adult Rats Subjected to Early Maternal Deprivation. Experimental neurobiology. 2016;25(6), 328–332. https://doi.org/10.5607/en.2016.25.6.328 DOI: https://doi.org/10.5607/en.2016.25.6.328

Uribe E, Fernández L, Pacheco D, Fernandez L, Nayadoleni N, Eblen-Zajjur A. Administration of memantine reverses behavioral, histological, and electrophysiological abnormalities in rats subjected to early maternal deprivation. J Neural Transm (Vienna). 2019;126(6):759-770. doi:10.1007/s00702-019-02007-x DOI: https://doi.org/10.1007/s00702-019-02007-x

Hirayama M, Kuriyama M. MK-801 is cytotoxic to microglia in vitro and its cytotoxicity is attenuated by glutamate, other excitotoxic agents and atropine. Possible presence of glutamate receptor and muscarinic receptor on microglia. Brain Res. 2001;897(1-2):204-206. doi:10.1016/s0006-8993(01)02114-x DOI: https://doi.org/10.1016/S0006-8993(01)02114-X

Emnett CM, Eisenman LN, Taylor AM, Izumi Y, Zorumski CF, Mennerick S. Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel blockers memantine and ketamine. Mol Pharmacol. 2013;84(6):935-947. doi:10.1124/mol.113.089334 DOI: https://doi.org/10.1124/mol.113.089334

Chen HS, Lipton SA. Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-D-aspartate-gated channels. J Pharmacol Exp Ther. 2005;314(3):961-971. doi:10.1124/jpet.105.085142 DOI: https://doi.org/10.1124/jpet.105.085142

Sans N, Petralia RS, Wang YX, Blahos J 2nd, Hell JW, Wenthold RJ. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci. 2000;20(3):1260-1271. doi:10.1523/JNEUROSCI.20-03-01260.2000 DOI: https://doi.org/10.1523/JNEUROSCI.20-03-01260.2000

Frantseva MV, Fitzgerald PB, Chen R, Möller B, Daigle M, Daskalakis ZJ. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex. 2008;18(5):990-996. doi:10.1093/cercor/bhm151 DOI: https://doi.org/10.1093/cercor/bhm151

Xi D, Zhang W, Wang HX, Stradtman GG, Gao WJ. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol. 2009;12(10):1395-1408. doi:10.1017/S146114570900042X DOI: https://doi.org/10.1017/S146114570900042X

Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT. Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci. 2008;28(4):850-861. doi:10.1523/JNEUROSCI.5078-07.2008 DOI: https://doi.org/10.1523/JNEUROSCI.5078-07.2008

Ganguly P, Holland FH, Brenhouse HC. Functional Uncoupling NMDAR NR2A Subunit from PSD-95 in the Prefrontal Cortex: Effects on Behavioral Dysfunction and Parvalbumin Loss after Early-Life Stress [published correction appears in Neuropsychopharmacology. 2016 Mar;41(4):1188]. Neuropsychopharmacology. 2015;40(12):2666-2675. doi:10.1038/npp.2015.134 DOI: https://doi.org/10.1038/npp.2015.134

Schoonover KE, McCollum LA, Roberts RC. Protein Markers of Neurotransmitter Synthesis and Release in Postmortem Schizophrenia Substantia Nigra. Neuropsychopharmacology. 2017;42(2):540-550. doi:10.1038/npp.2016.164 DOI: https://doi.org/10.1038/npp.2016.164

Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG. Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry. 2010;67(3):208-216. doi:10.1016/j.biopsych.2009.07.029 DOI: https://doi.org/10.1016/j.biopsych.2009.07.029

Sanchez-Mendoza EH, Camblor-Perujo S, Martins Nascentes-Melo L, et al. Compromised Hippocampal Neuroplasticity in the Interferon-α and Toll-like Receptor-3 Activation-Induced Mouse Depression Model. Mol Neurobiol. 2020;57(7):3171-3182. doi:10.1007/s12035-020-01927-0 DOI: https://doi.org/10.1007/s12035-020-01927-0

Bagasrawala I, Memi F, V Radonjic N, Zecevic N. N-Methyl d-Aspartate Receptor Expression Patterns in the Human Fetal Cerebral Cortex. Cereb Cortex. 2017;27(11):5041-5053. doi:10.1093/cercor/bhw289 DOI: https://doi.org/10.1093/cercor/bhw289

Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry. 2002;7(6):609-616. doi:10.1038/sj.mp.4001036 DOI: https://doi.org/10.1038/sj.mp.4001036

Yu W, Zhu M, Fang H, et al. Risperidone Reverses the Downregulation of BDNF in Hippocampal Neurons and MK801-Induced Cognitive Impairment in Rats. Front Behav Neurosci. 2019;13:163. Published 2019 Jul 23. doi:10.3389/fnbeh.2019.00163

Yu W, Zhu M, Fang H, et al. Risperidone Reverses the Downregulation of BDNF in Hippocampal Neurons and MK801-Induced Cognitive Impairment in Rats. Front Behav Neurosci. 2019;13:163. Published 2019 Jul 23. doi:10.3389/fnbeh.2019.00163 DOI: https://doi.org/10.3389/fnbeh.2019.00163

Meisner F, Scheller C, Kneitz S, et al. Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology. 2008;33(9):2228-2236. doi:10.1038/sj.npp.1301615 DOI: https://doi.org/10.1038/sj.npp.1301615

Amidfar M, Kim YK, Wiborg O. Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep. 2018;70(3):600-606. doi:10.1016/j.pharep.2017.12.007 DOI: https://doi.org/10.1016/j.pharep.2017.12.007

Folch J, Busquets O, Ettcheto M, et al. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. J Alzheimers Dis. 2018;62(3):1223-1240. doi:10.3233/JAD-170672 DOI: https://doi.org/10.3233/JAD-170672

Additional Files

Published

2022-10-11

How to Cite

Uribe, E., & Sanchez-Mendoza, E. (2022). The effects of Memantine and MK801 on NMDA receptor switching 2B and 2A subunits in hippocampal cell culture. Archivos De Neurociencias, 28(2). https://doi.org/10.31157/an.v28i2.410

Issue

Section

Original Articles